3.748 \(\int \frac{1}{(a+b \sin (e+f x)) \sqrt{c+d \sin (e+f x)}} \, dx\)

Optimal. Leaf size=75 \[ \frac{2 \sqrt{\frac{c+d \sin (e+f x)}{c+d}} \Pi \left (\frac{2 b}{a+b};\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )|\frac{2 d}{c+d}\right )}{f (a+b) \sqrt{c+d \sin (e+f x)}} \]

[Out]

(2*EllipticPi[(2*b)/(a + b), (e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/((a + b)*f
*Sqrt[c + d*Sin[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.213989, antiderivative size = 75, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.074, Rules used = {2807, 2805} \[ \frac{2 \sqrt{\frac{c+d \sin (e+f x)}{c+d}} \Pi \left (\frac{2 b}{a+b};\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )|\frac{2 d}{c+d}\right )}{f (a+b) \sqrt{c+d \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

(2*EllipticPi[(2*b)/(a + b), (e - Pi/2 + f*x)/2, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/((a + b)*f
*Sqrt[c + d*Sin[e + f*x]])

Rule 2807

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d*
Sin[e + f*x])/(c + d)]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{1}{(a+b \sin (e+f x)) \sqrt{c+d \sin (e+f x)}} \, dx &=\frac{\sqrt{\frac{c+d \sin (e+f x)}{c+d}} \int \frac{1}{(a+b \sin (e+f x)) \sqrt{\frac{c}{c+d}+\frac{d \sin (e+f x)}{c+d}}} \, dx}{\sqrt{c+d \sin (e+f x)}}\\ &=\frac{2 \Pi \left (\frac{2 b}{a+b};\frac{1}{2} \left (e-\frac{\pi }{2}+f x\right )|\frac{2 d}{c+d}\right ) \sqrt{\frac{c+d \sin (e+f x)}{c+d}}}{(a+b) f \sqrt{c+d \sin (e+f x)}}\\ \end{align*}

Mathematica [A]  time = 0.114261, size = 74, normalized size = 0.99 \[ -\frac{2 \sqrt{\frac{c+d \sin (e+f x)}{c+d}} \Pi \left (\frac{2 b}{a+b};\frac{1}{4} (-2 e-2 f x+\pi )|\frac{2 d}{c+d}\right )}{f (a+b) \sqrt{c+d \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e + f*x]]),x]

[Out]

(-2*EllipticPi[(2*b)/(a + b), (-2*e + Pi - 2*f*x)/4, (2*d)/(c + d)]*Sqrt[(c + d*Sin[e + f*x])/(c + d)])/((a +
b)*f*Sqrt[c + d*Sin[e + f*x]])

________________________________________________________________________________________

Maple [A]  time = 0.948, size = 151, normalized size = 2. \begin{align*} 2\,{\frac{c-d}{ \left ( da-cb \right ) \cos \left ( fx+e \right ) \sqrt{c+d\sin \left ( fx+e \right ) }f}\sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{c-d}}}\sqrt{-{\frac{ \left ( -1+\sin \left ( fx+e \right ) \right ) d}{c+d}}}\sqrt{-{\frac{d \left ( 1+\sin \left ( fx+e \right ) \right ) }{c-d}}}{\it EllipticPi} \left ( \sqrt{{\frac{c+d\sin \left ( fx+e \right ) }{c-d}}},-{\frac{b \left ( c-d \right ) }{da-cb}},\sqrt{{\frac{c-d}{c+d}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x)

[Out]

2*(c-d)*((c+d*sin(f*x+e))/(c-d))^(1/2)*(-(-1+sin(f*x+e))*d/(c+d))^(1/2)*(-d*(1+sin(f*x+e))/(c-d))^(1/2)*Ellipt
icPi(((c+d*sin(f*x+e))/(c-d))^(1/2),-(c-d)*b/(a*d-b*c),((c-d)/(c+d))^(1/2))/(a*d-b*c)/cos(f*x+e)/(c+d*sin(f*x+
e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sin \left (f x + e\right ) + a\right )} \sqrt{d \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \sin \left (f x + e\right ) + a\right )} \sqrt{d \sin \left (f x + e\right ) + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(f*x+e))/(c+d*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(1/((b*sin(f*x + e) + a)*sqrt(d*sin(f*x + e) + c)), x)